Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Genomic methods are becoming increasingly valuable and established in ecological research, particularly in nonmodel species. Supporting their progress and adoption requires investment in resources that promote (i) reproducibility of genomic analyses, (ii) accessibility of learning tools and (iii) keeping pace with rapidly developing methods and principles.We introduce marineomics.io, an open‐source, living document to disseminate tutorials, reproducibility tools and best principles for ecological genomic research in marine and nonmodel systems.The website's existing content spans population and functional genomics, including current recommendations for whole‐genome sequencing, RAD‐seq, Pool‐seq and RNA‐seq. With the goal to facilitate the development of new, similar resources, we describe our process for aggregating and synthesizing methodological principles from the ecological genomics community to inform website content. We also detail steps for authorship and submission of new website content, as well as protocols for providing feedback and topic requests from the community.These web resources were constructed with guidance for doing rigorous, reproducible science. Collaboration and contributions to the website are encouraged from scientists of all skill sets and levels of expertise.more » « less
-
Abstract There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome‐wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base‐pair resolution—whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl‐CpG binding domain bisulfite sequencing (MBDBS)—using multiple individuals from two reef‐building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation inMontipora capitata(11.4%) than the more sensitivePocillopora acuta(2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross‐species comparisons. As genome‐wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.more » « less
An official website of the United States government
